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Effective charging energy of the single electron box

Philipp Werner and Matthias Troyer
Institut für theoretische Physik, ETH Hönggerberg, CH-8093 Zürich, Switzerland
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We present numerical results on electron tunneling in a single-electron box at low temperature.
The effective action of this device is equivalent to the Hamiltonian of a classical XY spin chain
with long ranged interactions. Using an efficient cluster algorithm and a new transition matrix
Monte Carlo approach, we are able to compute the effective charging energy E∗

C in the limit of very
small tunneling resistance. While previous Monte Carlo simulations were restricted to the weak and
intermediate tunneling regimes, our method extends the range of E∗

C-values by more than 30 orders
of magnitude. This allows us to clearly observe the exponential suppression of E∗

C with increasing
tunneling conductance α. For large, but fixed α, the correction to the leading exponential behavior
exhibits a crossover from an intermediate temperature behavior at βE∗

C ≪ 1, to zero temperature
behavior at βE∗

C ≫ 1. We determine this correction in both regimes and compare the numerical
results to the numerous and controversial theoretical predictions for the strong tunneling limit.

I. INTRODUCTION

The so-called single electron box is an example of a dis-
sipation coupled mesoscopic system with discrete charge
states. It consists of a low-capacitance metallic island
connected to an outside lead by a tunnel junction. The
single electron box has been the subject of numerous
experimental1 and theoretical2,3,4,5,6,7 investigations, be-
cause it exhibits Coulomb blockade phenomena due to
the large charging energy of the island. The presence
of excess charges influences single electron tunneling and
this effect is used in single electron transistors11,12, which
can be viewed as a single electron box connected to two
tunnel junctions for the entrance and exit of electrons.

The first experimental realization of a single electron
box was achieved by Lafarge et al.

1. A circuit diagram
of this device is shown in Fig. 1. The box with excess
charge n is controlled by an external voltage source VG

to which it is connected through a capacitor CG and a
tunnel junction with resistance Rt and capacitance Ct.
An applied gate voltage VG induces a continuous polar-
ization charge nG = CGVG/e. The bare charging energy
EC = e2/2(Ct + CG) sets the energy scale.

The classical electrostatic energy for an integer number
n of additional electrons on the island is given by the set
of parabolas En(nG) = EC(n−nG)2, as shown in Fig. 2.
In the ground state, the number of excess charges on the
island is therefore a staircase function with unit jumps
at nG = 1/2 (mod 1).

This simple classical picture is valid at low tempera-
tures, kBT ≪ EC , and high tunneling resistance, Rt ≫
RK = h/e2 ≈ 25.8kΩ. Thermal fluctuations will round
off the corners of the step structure. But even at zero
temperature, electron tunneling processes can smear out
the staircase, which for large tunneling approaches a
straight line. These quantum fluctuations renormalize
the ground state energy and lead to an effective charging

n
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FIG. 1: Circuit diagram of the single electron box. The box
with excess charge n is indicated by the dashed rectangle. It
is connected to a voltage source through a capacitor CG and
a tunnel junction with resistance Rt and capacitance Ct.

.

0 1 2−1−2 nG

n, E

E E E E E

n

−2 −1 0 1 2

FIG. 2: Illustration of the Coulomb staircase in the limit
kBT ≪ EC and Rt ≫ RK .
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Several recent theoretical papers have addressed the
renormalization of the charging energy due to electron
tunneling processes. Perturbative expansions, valid for
small values of the dimensionless tunneling conductance
α = 1

8π2

RK

Rt
, yield2

E∗
C

EC

= 1 − 2α+ 1.27α2 − 0.182α3 +O(α4). (2)
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TABLE I: Analytical predictions for the leading correction to
the exponential suppression, Eq. (3), of the effective charging
energy in the limit of large α.

Ref. Method f(α)

3 instanton 4π4α2

4 instanton 16π6α3

5 perturbation theory 8π6α3(1 − (5 log α)/(2π2α))

6 RG ∼ α

7 real-time RG 0.5(πα)6.5

In order to treat the opposite limit of large tunneling
conductance, various approaches have been proposed –
with controversial results. While these analytical predic-
tions agree on the leading exponential suppression of the
effective charging energy,

E∗
C

EC

= f(α)e−π2α, (3)

the pre-exponential factors differ widely. Using an instan-
ton approach, Panyukov and Zaikin3 obtain f(α) ∼ α2,
whereas Wang and Grabert4 find f(α) ∼ α3. Lukyanov
and Zamolodchikov5 use a perturbative expansion in 1/α
and propose an expression similar to Ref. 4, with an ad-
ditional logarithmic term. The renormalization group
(RG) calculation by Hofstetter and Zwerger6 predicts a
linear dependence, while the “real-time RG” approach of
König and Schoeller7 leads to a pre-factor f(α) ∼ α6.5

in the limit of large α. We list these different theoretical
predictions in Tab. I.

Several attempts to resolve the issue by numerical
simulations6,8,9 have failed because of size constraints
and the inability to reach the asymptotic regime where
the exponential factor in Eq. (3) dominates. Some of
these Monte Carlo results even seemed to disagree for
intermediate values of α.

The purpose of this study is to provide accurate data
far into the strong tunneling regime, enabling us to test
the predictions from the various analytical approaches.
We observe two distinct behaviors, depending on the in-
verse temperature β and the tunneling strength α. If
βE∗

C ≪ 1, multiple phase slip paths get suppressed
and we find a pre-exponential factor which roughly
agrees with the single-instanton predictions.3 In the limit
βE∗

C ≫ 1, which is relevant for the comparison with an-
alytical results for zero temperature, we find f(α) ∼ α5.
This result disagrees with all the predictions in Tab. I.

II. MODEL AND METHOD

The partition function of the single electron box with
gate charge zero can be written as a path integral over a
compact angular variable φ (conjugate to the number of

excess charges on the island)10

Z =

∫ 2π

0

dφ0

∞
∑

n=0

∫ φ0±2πn

φ0

Dφe−S[φ]. (4)

In Eq. (4), the sum is over all paths with winding number
±n and the imaginary time effective action reads (~ = 1)

S[φ] =
1

4EC

∫ β

0

dτ

(

dφ

dτ

)2

+ α

∫ β

0

∫ β

0

dτdτ ′
(π

β
)2 sin2(φ(τ)−φ(τ ′)

2 )

sin2(π
β
(τ − τ ′))

. (5)

The first term accounts for the charging energy and the
long ranged part for electron tunneling.

This system can be mapped to a chain of classical XY
spins, as the discretized action becomes

S[φ] = −Γ
N

∑

j=1

cos(φj+1−φj)−α
∑

j<j′

( π
N

)2 cos(φj − φj′ )

sin2( π
N

(j − j′))
.

(6)
We use a Trotter number N , corresponding to an imag-
inary time step (and short-distance cutoff) ∆τ = β/N
and nearest neighbor coupling Γ = 1/(2EC∆τ). Periodic
boundary conditions φN+1 − φ1 are employed.

In Fourier space the action becomes local,

S[φ] =
1

N

N−1
∑

k=0

gk|ψk|
2, (7)

where ψk =
∑N−1

j=0 ei 2π
N

jkeiφj denotes the Fourier trans-

form of eiφ and gk the Fourier transform of the kernel
(j 6= 0)

g(j) = −
Γ

2
(δj,1 + δj,N−1) −

α

2

(π/N)2

sin((π/N)j)2
. (8)

Using fast Fourier transformation18 it is possible to com-
pute the action of a configuration in a time O(N logN)
despite the long ranged interactions.

The winding number ω of a phase configuration
{φj}j=1,...N is determined by summing up the phase dif-
ferences as

ω =

N
∑

j=1

[(φj+1 − φj + π) mod 2π] −Nπ. (9)

The effective charging energy can then be computed from
the expectation value of the winding number squared6,

E∗
C

EC

=
2π2

βEC

〈ω2〉. (10)
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A. Cluster Monte Carlo

In most of the following analysis, we use path in-
tegral Monte Carlo simulations to study the action in
Eq. (6), employing a variant of the Swendsen-Wang clus-
ter algorithm13,14 to reduce auto-correlation times. The
efficient treatment of long ranged interactions proposed
by Luijten and Blöte15 reduces the time for a cluster up-
date to O(N logN). This allows us to simulate chains of
up to 107 spins, which is three orders of magnitude larger
than the systems which have previously been studied.

We ran simulations for ∆τEC = 0.5, 0.125, 0.05 and
0.005 and found essentially the same results for the latter
three values of the discretization step (especially for large
α, which is the limit of interest). We therefore consider
an extrapolation in ∆τ unnecessary for the purpose of
this study and present data for ∆τEC = 0.05, unless
otherwise stated. With this choice of ∆τ , the cluster
algorithm allows us to simulate the single-electron box
down to temperatures βEC ∼ 104. However, for large
α, the fraction of paths with winding number different
from zero decreases as exp(−π2α). Due to this rapidly
deteriorating efficiency, the cluster algorithm can only be
used in the range 0 ≤ α . 3.

B. Transition Matrix Monte Carlo

In order to compute the effective charging energy at
even larger values of the tunneling conductance, we de-
veloped a new Monte Carlo approach, which attempts to
insert or remove phase slips (kinks) and in doing so mea-
sures the relative weights of the different winding number
sectors. As only paths of winding number 0 and 1 con-
tribute in the limit of large α, we restrict the discussion to
the calculation of the relative weight of these two wind-
ing number sectors. However, the algorithm can also be
used to study additional winding number sectors.

We denote by wn the weight of the configurations with
winding number ±n,

wn =

∫ 2π

0 dφ0

∫ φ0±2πn

φ0

Dφe−S[φ]

∫ 2π

0
dφ0

∑∞

n=0

∫ φ0±2πn

φ0

Dφe−S[φ]
(11)

The effective charging energy (10) can then be expressed
for large α as

E∗
C

EC

=
2π2

βEC

∑∞

n=0 n
2wn

∑∞

n=0 wn

≈
2π2

βEC

w1

w0
. (12)

The weights w0 and w1 correspond to a “density of
states” in winding number space. In order to determine
w1/w0 we could sample the winding number space with
the inverse density of states and energy space with the
usual Boltzmann weight. The acceptance probability for

a proposed kink update from a configuration with wind-
ing number n and action S to winding number n′ and
action S′ then becomes

P ((n, S) → (n′, S′)) = min

(

1,
wn

wn′

exp(S − S′)

)

, (13)

whereas a cluster update from n to n′ would be accepted
with probability

P ((n) → (n′)) = min

(

1,
wn

wn′

)

. (14)

The relative density of states w1/w0 then satisfies the
“flat histogram” condition, which for n ∈ {0, 1} can be
expressed as

〈P (0 → 1)〉 (w1/w0) = 〈P (1 → 0)〉 (w1/w0). (15)

Averages are taken over a sequence of kink- and cluster
updates.

Our strategy is to determine the transition probabili-
ties 〈P (0 → 1)〉 and 〈P (1 → 0)〉 rather than trying to find
the relative occupation of the winding sectors w1/w0 by a
Wang-Landau type iterative procedure16. This is an ap-
proach in the spirit of the transition Matrix Monte Carlo
method17.

Each winding number sector is treated separately and
the cluster updates serve essentially to randomize the
configurations within that sector, although their contri-
bution to the probabilities 〈P (i→ j)〉 becomes important
for smaller α. In a kink update we insert a phase slip

φ
(τ0,λ)
kink = ±2 arctan

(

τ − τ0
λ

)

(16)

of random width λ at some random position τ0 (or rather

φ
(τ0,λ)
kink = ±π arctan((τ − τ0)/λ)/ arctan(β/2λ), periodi-

cally continued outside the the interval −β

2 ≤ τ−τ0 ≤ β

2 ,
which is a slightly modified version compatible with the
finite size of the system). These are stationary paths of
the long ranged part of the action (5) in the limit β → ∞.

It is important to consider the entire range of widths
including stretched out configurations. In order to study
the typical distribution of widths we generated configu-
rations for N = 105 (βEC = 5 · 103) in winding sector
1 using the cluster algorithm and applied a decimation
procedure in which the number of spins was reduced by
half at each step. The average winding number 〈|ω(n)|〉
of these coarse-grained configurations is shown as a func-
tion of decimation steps n in Fig. 3. Removing every
second spin reduces the width of the kink to approxi-
mately half its previous value until the kink disappears
completely. From the dependence of 〈|ω(n)|〉 on n it is
therefore possible to gain insight into the original dis-
tribution of kink widths in winding sector 1. One finds
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FIG. 3: Average winding number ω(n) of coarse grained con-
figurations. The original configuration has winding number
|w(0)| = 1. It is renormalized by removing every second spin.
Kinks of width ≈ 2n will disappear after approximately n iter-
ations, resulting in a coarse-grained configuration of winding
number 0.

from Fig. 3, where we show the average winding after
coarse-graining a configuration, that the kink widths for
1.6 ≤ α ≤ 2.4 are approximately uniformly distributed in
the range [26, 216], whereas for α = 9 only smooth con-
figurations with widths ∈ [213, 216] are generated. The
sharpest kinks have a width of 25. In order to cover the
whole range of relevant paths, we chose λmin = 10β/N
and λmax = β.

Inserting φ
(τ0,λ)
kink changes the original configuration φ

with winding number n to φ′ with winding number n±1.
The corresponding Boltzmann weights exp(S[φ] − S[φ′])
are computed using Eq. (7) and stored during the simula-
tion. Updates which produce a configuration with wind-
ing number |n| > 1 as well as cluster updates which leave
the winding number unchanged get the weight 0. A clus-
ter update which connects to the other winding number
sector gets the weight 1. From these data, one can cal-
culate the average transition probabilities 〈P (i → j)〉 as
a function of w1/w0 using Eqs. (13) and (14). Finally,
the relative weight of winding sector 1 is determined by
solving Eq. (15).

To illustrate this procedure, Fig. 4 shows the proba-
bilities 〈P (0 → 1)〉 (with positive slope) and 〈P (1 → 0)〉
(with negative slope) as a function of − ln(w1/w0) for sev-
eral values of α. The intersection points of these curves
determine w1/w0. The effective charging energies ob-
tained by this new method are consistent with the results
from cluster Monte Carlo for the values of α which can
be treated with the latter method. The new approach,
however, allows us to simulate the system at much higher
tunneling conductance, as it improves the sensitivity to
winding number fluctuations by dozens of orders of mag-
nitude.
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FIG. 4: Transition probabilities 〈P (0 → 1)〉 (with positive
slope) and 〈P (1 → 0)〉 (with negative slope) plotted as a func-
tion of − ln(w1/w0). The intersection points of these curves
determines w1/w0. From left to right, the data correspond to
α = 2, 3, . . ., 9.
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FIG. 5: Effective charging energy for βEC = 5 ·103 computed
using cluster updates and kink updates. Previously published
results obtained by means of local update schemes are shown
for comparison.

III. EFFECTIVE CHARGING ENERGY

A. Leading exponential behavior

The range of applicability of the different simulation
methods is illustrated in Fig. 5, where we plot the effec-
tive charging energy as a function of tunneling conduc-
tance for βEC = 5 · 103. While cluster updates allow to
compute accurate data at small and intermediate values
of α, they lose their effectiveness around E∗

C/EC ≈ 10−8

or α ≈ 3. On the other hand, the kink-updates enable us
to cover tunneling strengths beyond α = 9, which corre-
sponds to E∗

C/EC ≈ 10−34. This highly sensitive method
allows us to clearly observe the theoretically predicted
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FIG. 6: Effective charging energy in the weak and inter-
mediate tunneling regime. The black lines show the first-,
second- and third-order perturbation result (6). The data for
βEC = 5 · 103 were computed with ∆τ = 0.005 in order to
reduce the energy shift due to discretization effects.

exponential suppression (3) of the effective charging en-
ergy. For comparison, we also plot some results from local
update simulations.8,9 Although these simulations were
performed on much smaller lattices, they merely reached
E∗

C/EC ≈ 10−2.

B. Weak and intermediate tunneling

While the weak tunneling regime can be treated per-
turbatively, few theoretical results exist for the experi-
mentally accessible intermediate region. Since previous
Monte Carlo simulations6,8,9 seemed to disagree in this
region, we plot our data for weak and intermediate tun-
neling in Fig. 6. The third order perturbation result (6)
reproduces our data for βEC = 5 ·103 and ∆τ = 0.005 up
to α = 0.6 (the data for ∆τ = 0.05 are shifted to slightly
larger E∗

C/EC). Also shown in Fig. 6 are results for lower
and higher temperature and the data of Wang et al.

8 and
Herrero et al.

9. The results in Ref. 8 were obtained for
βEC = 5 · 102 and are consistent with our data. The
larger time step ∆τEC = 0.2 used in their simulation
may be the reason for the tendency to somewhat larger
values of E∗

C . The systematically lower values in Ref. 9
were computed at higher temperature βEC = 102, which
explains the discrepancy.

Around α ≈ 0.6 the system enters an intermediate
tunneling regime, where perturbation theory fails but
the asymptotic formulas for large tunneling are not yet
valid. The exponential suppression of the effective charg-
ing emerges above α ≈ 1.5 (see Figs. 5 and 6). This
strong tunneling region cannot be accessed by local up-
date schemes.
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FIG. 7: Correction to the exponential behavior, Eq. 3, at
intermediate and large tunneling conductance and compari-
son with analytical predictions. A crossover from intermedi-
ate tunneling (zero temperature) behavior to strong tunneling
(intermediate temperature) behavior occurs at βE∗

C ≈ 1.

C. Strong tunneling and crossover

In order to determine the pre-exponential factor f(α)
in Eq. (3), we multiply the data with exp(π2α). The
value π2α corresponds to the (long ranged) action of an
optimal phase slip path (16) in the limit β → ∞ and
∆τ → 0. Since the leading power of the pre-exponential
factor will depend sensitively on this value, one might
wonder whether the discretization leads to a significant
change. For our values of β and ∆τ , however, we found
that periodic versions of the paths (16), with λ not too
small, have an action which deviates very little from π2α.

In Fig. 7, we plot cluster Monte Carlo results for
βEC = 5 · 102, 5 · 103, 5 · 104 and 5 · 105. The lowest
temperature was computed with ∆τEC = 0.2, the oth-
ers with ∆τEC = 0.05. Also shown in Fig. 7 are the
asymptotic predictions from several analytical calcula-
tions. The line with slope 2 (in the log-log plot) is the
result of Panyukov and Zaikin3, those with slope 3 were
predicted in Refs. 4 and 5 while the line with slope 6.5
shows the asymptotic form of the“real time RG” result by
König and Schoeller7. Hofstetter and Zwerger6 predict a
slope of 1, but not the amplitude.

As the tunneling strength increases, the effective charg-
ing energyE∗

C gets reduced and for fixed temperature one
observes a crossover from intermediate tunneling behav-
ior, where βE∗

C ≫ 1, to strong tunneling behavior in
the region βE∗

C ≪ 1, or equivalently for α fixed, from
zero temperature behavior to an intermediate temper-
ature behavior. This crossover occurs around βE∗

C = 1
and is clearly visible in Fig. 7. For the temperatures plot-
ted in this figure, the crossover condition corresponds to
α-values in the range 1.4 ≤ α ≤ 2.2.
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regime can be fitted by shifted parabolas, Eq. (18). The dot-
ted lines indicate the values of α, where the occupation of
winding number sectors 1 and 2 vanish (see Fig. (9)). Data
points marked with circles show the results for βEC = 5 · 103

computed by the transition matrix method, which considers
configurations with kink-anti-kink pairs.

D. Zero temperature regime, βE∗

C ≫ 1

Theoretical predictions for zero temperature have to be
compared to the Monte Carlo data in the zero temper-
ature (intermediate tunneling) limit βEC ≫ βE∗

C ≫ 1.
Because of size restrictions we can only obtain accurate
results for α . 1.6. These data points can be fitted with
a power-law as indicated by the dotted line in Fig. 7. It
corresponds to a pre-exponential factor

f(α) ∼ α5. (17)

Because this fit is performed in the region of interme-
diate tunneling strengths, it is possible that the slope
of the zero-temperature curve will decrease and eventu-
ally approach for example the solution of Lukyanov and
Zalomodchikov.5 The calculation of Ref. 7 overestimates
the exponent, whereas the result of Ref. 3 lies too low.
It is even more unlikely that the zero-temperature curve
will approach the slope 1 predicted by Ref. 6. The lat-
ter RG-calculation was based on the assumption that the
winding number remains unchanged under renormaliza-
tion, which appears incorrect, as can be seen in Fig. 3.

E. Intermediate temperature regime, βE∗

C ≪ 1

In the intermediate temperature (strong-tunneling) re-
gion βEC ≫ 1 ≫ βE∗

C , the pre-exponential factor can
be fitted by a shifted parabola

f(α) ∼ α2 + const. (18)

In Fig. 8 we show these parabolic fits for βEC = 5 ·102,
5 ·103 and 5 ·104. Upon close inspection, these data show
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FIG. 9: Relative occupation of the winding number sectors 1,
2 and 3 as a function of tunneling strength. As α increases,
higher winding number configurations get suppressed and in
a finite number of updates, multiple kink paths will not be
generated at large values of α.
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FIG. 10: Pre-exponential factor of the effective charging en-
ergy in the intermediate and strong tunneling regime. The
parabolic fit to the cluster Monte Carlo data (see Fig. 8) is
consistent with the data obtained from the transition matrix
approach even at much higher tunneling conductance.

some intriguing features. At certain values of α, the slope
seems to change suddenly and the quality of the data
deteriorates. This feature is a result of the suppression of
multiple-kink paths. As α is increased, the occupation of
higher winding sectors is reduced and for a finite number
of measurements it will eventually vanish. The visible
change in slope occurs at the value of α, where multiple-
kink paths get completely suppressed.

To illustrate this point, we plot in Fig. 9 the relative oc-
cupation of the lowest three winding number sectors as a
function of α. The position where the winding numbers
2 and 3 get suppressed are marked by the vertical line
segments in Figs. 8 and 9. The transition matrix Monte
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Carlo data for very large tunneling strength are consis-
tent with the parabolic fit to the cluster Monte Carlo
data, as shown in Fig. 10.

The instanton calculations3,4 neglect the interactions
between phase-slips. This is probably the reason why
they predict a pre-exponential factor which is roughly
consistent with the simulation results in the large tun-
neling (intermediat temperature) region, where multiple
phase slips no longer contribute. In the zero temperature
regime βE∗

C ≫ 1, however, multiple-kink configurations
are abundant (see Fig. 9). The considerably different
slope in this region leads to the conclusion, that inter-
actions between phase slips are important. They should
be considered in a theory which attempts to predict the
pre-exponential factor f(α) for the single-electron box at
zero temperature.

IV. CONCLUSIONS

We calculated the effective charging energy of a single-
electron box using cluster Monte Carlo simulations and
a new transition matrix Monte Carlo approach. The new
method allows us to study very large tunneling strengths
and to observe the leading exponential suppression of the

charging energy, E∗
C/EC = f(α) exp(−π2α), over more

than thirty orders of magnitude. For a finite inverse tem-
perature β one observes two regimes. In the large tunnel-
ing (intermediate temperature) regime, E∗

Cβ ≪ 1, where
multiple kink paths are suppressed, the pre-exponential
factor has a leading power f(α) ∼ α2, consistent with
the instanton calculations of Ref. 3. In the interme-
diate tunneling (zero temperature) regime, E∗

Cβ ≫ 1,
multiple kink paths are abundant and the interactions
between phase-slips become important. Simulation re-
sults obtained in this regime can be compared to analyt-
ical predictions for zero temperature. Fitting our data
in the range 1.0 < α < 1.6 to a power-law, we find a
pre-exponential factor f(α) ∼ α5, inconsistent with any
of the theories.
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